国立研究開発法人情報通信研究機構(NICT)、国立大学法人神戸大学、株式会社エルテスは2月1日、プライバシー保護深層学習技術により、不正送金の検知精度向上に向けた実証実験を開始すると発表した。この実証実験に参加する金融機関を募集する。NICT、神戸大学、エルテスは、2016年度にJST CRESTに採択された研究課題「複数組織データ利活用を促進するプライバシー保護データマイニング」のもと、パーソナルデータを保護しつつ機械学習アルゴリズムを活用して異常・不正検知を行うプライバシー保護データ解析技術の研究開発に取り組んできた。この研究開発の中で、NICTは各組織内で学習した結果を暗号化して中央サーバに集め、中央サーバで暗号化したままこれらの学習結果を更新できるプライバシー保護深層学習技術「DeepProtect」を開発した。3社はこの技術の検証のため、千葉銀行などの協力のもとで不正送金(振り込め詐欺等)の検知実験を行っている。この実験において、実際の不正送金のうち約70%を不正送金であると正しく判定できる例が出ている。しかし、個々の銀行で発生する不正送金の件数は、学習データとしては十分ではなく、より多くの金融機関と連携した実証実験を開始することで、不正送金の自動検知の精度向上を目指す。
Microsoft Windows において computerDefault.exe の実装不備を悪用して UAC による制限を回避可能となる手法(Scan Tech Report)2019.1.29 Tue 8:30